TENSILE FRACTURE ANALYSIS of FIBER-REINFORCED CEMENTITIOUS COMPOSITES with REINFORCING BARS focusing on BRIDGING FORCES

Hiroki OGURA, Shimizu Corporation Minoru KUNIEDA, Gifu University Hikaru NAKAMURA, Nagoya University

Meso-scale tensile fracture analysis with discretized short fibers is used to investigate fiber-reinforced cementitious composites (FRCC) with reinforcing bars. In this numerical analysis, the effects of fiber volume fraction, steel reinforcement ratio, steel-FRCC bond characteristics, and fiber distribution on tensile fracturing are investigated. The results show that there are cases in which localized cracking occurs in the post-yield range of the reinforcing bars. The localization mechanism is numerically explained and a method of inhibiting localization is developed by focusing on the bridging forces carried by fibers and steel bars. It is also clarified that, in strain-hardening cementitious composites (SHCC), steel reinforcement is an effective means of enhancing strain capacity.

Fig. 1 Discretized cement matrix, steel bars, and fibers ($V_f=0.5\%$): **(a)** uniform distribution model; **(b)** nonuniform distribution model

Fig. 2 Number of fibers intersecting a given cross-section

Fig. 3 Tensile load-average strain curves

Fig. 4 Simulated crack patterns and fibers that bridge crack faces at 0.57% strain: (a) $V_f=0$; (b) $V_f=0.5\%$

Fig. 5 Simulated crack patterns at 1.2% strain

	riangle (Maximum load)	• (Post peak)
<i>p</i> = 0		
<i>p</i> = 0.4%		
<i>p</i> = 2.2%		

Fig. 7 Simulated crack patterns (V_f =1.5% – uniform distribution model)

Fig. 8 Tensile load-average strain curves (*V_f*=1.5%)

Fig. 9 Ultimate tensile strain as a function of steel ratio